PyTorch深度学习开发医学影像端到端判别项目

PyTorch深度学习开发医学影像端到端判别项目资源介绍:

PyTorch深度学习开发医学影像端到端判别项目

越来越多的科学和商业项目选择PyTorch作为首选的深度学习框架。它易于启动,功能齐全。PyTorch是初学者或实际项目的绝佳工具。本课程专为实践实践而设计,将深度学习概念和基础学习整合到多个实践项目中。荒川教师将引导您进入PyTorch深度学习世界,并使用PyTorch单独实现。

资源目录:

├──1
| ├──1-1课程导学2249.mp4 61.46M
| ├──1-2深度学习如何影响生活1333.mp4 25.80M
| └──1-3常用深度学习框架1738.mp4 26.91M
├──2
| ├──2-1环境安装与配置1319.mp4 32.13M
| ├──2-2使用预训练的ResNet网络给图片分类一1610.mp4 41.23M
| ├──2-3使用预训练的ResNet网络给图片分类二0845.mp4 38.30M
| └──2-4使用预训练的GAN网络把马变成斑马1716.mp4 48.23M
├──3
| ├──3-1工业级数据挖掘流程一2359.mp4 51.27M
| ├──3-2工业级数据挖掘流程二2130.mp4 40.81M
| ├──3-3课程重难点技能分布0515.mp4 12.93M
| └──3-4课程实战项目简介0700.mp4 13.17M
├──4
| ├──4-10张量的底层实现逻辑二1335.mp4 23.68M
| ├──4-1什么是张量1407.mp4 26.66M
| ├──4-2张量的获取与存储一1635.mp4 33.17M
| ├──4-3张量的获取与存储二1540.mp4 29.16M
| ├──4-4张量的基本操作一0830.mp4 17.94M
| ├──4-5张量的基本操作二1604.mp4 37.52M
| ├──4-6张量中的元素类型0656.mp4 16.98M
| ├──4-7张量的命名0832.mp4 18.75M
| ├──4-8把张量传递到GPU中进行运算0607.mp4 11.22M
| └──4-9张量的底层实现逻辑一1942.mp4 40.78M
├──5
| ├──5-1普通二维图像的加载一0751.mp4 26.91M
| ├──5-2普通二维图像的加载二1259.mp4 24.07M
| ├──5-33D图像的加载1230.mp4 39.90M
| ├──5-4普通表格数据加载1453.mp4 37.46M
| ├──5-5有时间序列的表格数据加载1650.mp4 42.33M
| ├──5-6连续值序列值分类值的处理1345.mp4 29.02M
| ├──5-7自然语言文本数据加载1945.mp4 39.94M
| └──5-8本章小结0504.mp4 8.71M
├──6
| ├──6-10使用PyTorch提供的优化器1532.mp4 31.30M
| ├──6-11神经网络重要概念-激活函数1550.mp4 37.17M
| ├──6-12用PyTorch的nn模块搭建神经网络1537.mp4 22.00M
| ├──6-13构建批量训练方法1453.mp4 29.50M
| ├──6-14使用神经网络解决温度计示数转换问题2123.mp4 47.48M
| ├──6-1常规模型训练的过程1104.mp4 23.22M
| ├──6-2温度计示数转换1140.mp4 18.97M
| ├──6-3神经网络重要概念-损失1240.mp4 24.73M
| ├──6-4PyTorch中的广播机制1646.mp4 38.46M
| ├──6-5神经网络重要概念-梯度1811.mp4 42.23M
| ├──6-6神经网络重要概念-学习率1947.mp4 47.49M
| ├──6-7神经网络重要概念-归一化2620.mp4 66.04M
| ├──6-8使用超参数优化我们的模型效果1136.mp4 27.67M
| └──6-9使用PyTorch自动计算梯度1556.mp4 41.08M
├──7
| ├──7-10使用卷积提取图像中的特定特征0800.mp4 18.43M
| ├──7-11借助下采样压缩数据0753.mp4 15.42M
| ├──7-12借助PyTorch搭建卷积网络1012.mp4 21.93M
| ├──7-13训练我们的分类模型1005.mp4 25.22M
| ├──7-14训练好的模型如何存储0147.mp4 5.52M
| ├──7-15该用GPU训练我们的模型0859.mp4 23.23M
| ├──7-16优化方案之增加模型宽度-width0855.mp4 24.53M
| ├──7-17优化方案之数据正则化-normalization一1338.mp4 31.38M
| ├──7-18优化方案之数据正则化-normalization二1655.mp4 40.59M
| ├──7-19优化方案之数据正则化-normalization三0856.mp4 20.95M
| ├──7-1CIFAR-10数据集介绍0804.mp4 15.82M
| ├──7-20优化方案之增加模型深度-depth0641.mp4 40.47M
| ├──7-21本章小结0605.mp4 11.36M
| ├──7-2为数据集实现Dataset类0842.mp4 21.46M
| ├──7-3为模型准备训练集和验证集1100.mp4 25.01M
| ├──7-4借助softmax方法给出分类结果1057.mp4 18.87M
| ├──7-5分类模型常用损失之交叉熵损失0738.mp4 14.03M
| ├──7-6全连接网络实现图像分类2553.mp4 60.27M
| ├──7-7对全连接网络的改进之卷积网络1349.mp4 26.85M
| ├──7-8借助PyTorch搭建卷积网络模型1539.mp4 35.65M
| └──7-9卷积中的数据填充方法padding0431.mp4 10.21M
├──8
| ├──8-10分割训练集和验证集0927.mp4 21.32M
| ├──8-11CT数据可视化实现一1643.mp4 27.21M
| ├──8-12CT数据可视化实现二1513.mp4 51.74M
| ├──8-13CT数据可视化实现三0943.mp4 35.42M
| ├──8-14本章小结0455.mp4 8.84M
| ├──8-1肺部癌症检测的项目简介1338.mp4 29.01M
| ├──8-2CT数据是什么样子0722.mp4 18.88M
| ├──8-3制定一个解决方案0840.mp4 20.71M
| ├──8-4下载项目中的数据集0932.mp4 22.82M
| ├──8-5原始数据是长什么样子的0822.mp4 26.30M
| ├──8-6加载标注数据2219.mp4 39.24M
| ├──8-7加载CT影像数据0751.mp4 17.90M
| ├──8-8数据坐标系的转换2326.mp4 49.87M
| └──8-9编写Dataset方法1244.mp4 25.04M
└──9
| ├──9-10借助TensorBoard绘制指标曲线1230.mp4 49.02M
| ├──9-11新的模型评估指标F1score1751.mp4 36.62M
| ├──9-12实现F1Score计算逻辑0858.mp4 17.37M
| ├──9-13数据优化方法1136.mp4 28.80M
| ├──9-14数据重复采样的代码实现1549.mp4 34.52M
| ├──9-15数据增强的代码实现1937.mp4 47.67M
| ├──9-16第二个模型结节分割0853.mp4 26.46M
| ├──9-17图像分割的几种类型0705.mp4 26.80M
| ├──9-18U-Net模型介绍1927.mp4 57.54M
| ├──9-19为图像分割进行数据预处理2501.mp4 64.79M
| ├──9-1第一个模型结节分类1540.mp4 34.11M
| ├──9-20为图像分割构建Dataset类2623.mp4 56.42M
| ├──9-21构建训练Dataset和使用GPU进行数据增强1116.mp4 31.22M
| ├──9-22Adam优化器和Dice损失1127.mp4 25.18M
| ├──9-23构建训练流程1826.mp4 41.76M
| ├──9-24模型存储图像存储代码介绍0550.mp4 22.60M
| ├──9-25分割模型训练及在TensorBoard中查看结果1145.mp4 65.55M
| ├──9-26本章小结1511.mp4 25.95M
| ├──9-2定义模型训练框架1831.mp4 36.51M
| ├──9-3初始化都包含什么内容0913.mp4 21.05M
| ├──9-4编写数据加载器部分0702.mp4 17.53M
| ├──9-5实现模型的核心部分1827.mp4 41.81M
| ├──9-6定义损失计算和训练验证环节一1731.mp4 45.07M
| ├──9-7定义损失计算和训练验证环节二0920.mp4 21.73M
| ├──9-8在日志中保存重要信息1956.mp4 53.26M
| └──9-9尝试训练第一个模型1650.mp4 85.60M

├──10
| ├──10-1连接分割模型和分类模型3005.mp4 60.47M
| ├──10-2新的评价指标AUC-ROC曲线3716.mp4 79.33M
| ├──10-3使用finetune方法构建肿瘤恶性判断模型2908.mp4 77.74M
| ├──10-4完整的实现端到端肺部肿瘤检测1731.mp4 65.06M
| ├──10-5使用合适的框架把模型部署上线一1446.mp4 36.83M
| ├──10-6使用合适的框架把模型部署上线二1206.mp4 48.85M
| └──10-7本章小结0833.mp4 16.12M
├──11
| ├──11-1肿瘤检测系统架构回顾1512.mp4 35.43M
| ├──11-2课程中的神经网络回顾1327.mp4 30.21M
| ├──11-3模型优化方法回顾1020.mp4 20.89M
| ├──11-4面试过程中可能遇到的问题2209.mp4 62.98M
| └──11-5持续学习的几个建议2748.mp4 50.14M
| └──资料.zip
此隐藏内容仅限VIP查看升级VIP

侵权联系与免责声明 1、本站资源所有言论和图片纯属用户个人意见,与本站立场无关 2、本站所有资源收集于互联网,由用户分享,该帖子作者与独角兽资源站不享有任何版权,如有侵权请联系本站删除 3、本站部分内容转载自其它网站,但并不代表本站赞同其观点和对其真实性负责 4、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意 如有侵权联系邮箱:itdjs@qq.com

独角兽资源站 python PyTorch深度学习开发医学影像端到端判别项目 https://www.itdjs.com/4769/html

发表评论
暂无评论
  • 0 +

    资源总数

  • 0 +

    今日发布

  • 0 +

    本周发布

  • 0 +

    运行天数

你的前景,远超我们想象